The computations of acting agents and the agents acting in computations

Philipp Hennig
ICERM
5 June 2017

Research Group for Probabilistic Numerics
Max Planck Institute for Intelligent Systems
Tübingen, Germany

Some of the presented work was supported by
the Emmy Noether Programme of the DFG

Part I: The computations of acting agents

+ a minimal introduction to machine learning
+ the computational tasks of learning agents
+ some special challenges, some house numbers

Part II: The agents acting in computations
10:30-11:15

+ computation is inference
+ new challenges require new answers
+ a computer science view on numerical computations

An Acting Agent

The Very Foundation

$$
p(x \mid D)=\frac{p(x) p(D \mid x)}{\int p(x) p(D \mid x) d x}
$$

prior explicit representation of assumptions about latent variables likelihood explicit representation of assumptions about generation of data posterior structured uncertainty over prediction evidence marginal likelihood of model

$$
\mathcal{N}(x ; \mu, \Sigma)=\frac{1}{\sqrt{2 \pi|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)
$$

Gaussian Inference

the link between probabilistic inference and linear algebra

+ products of Gaussians are Gaussians $\quad C:=\left(A^{-1}+B^{-1}\right)^{-1} \quad c:=C\left(A^{-1} a+B^{-1} b\right)$

$$
\mathcal{N}(x ; a, A) \mathcal{N}(x ; b, B)=\mathcal{N}(x ; c, C) \mathcal{N}(a ; b, A+B)
$$

+ marginals of Gaussians are Gaussians

$$
\int \mathcal{N}\left[\binom{x}{y} ;\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{y x} & \Sigma_{y y}
\end{array}\right)\right] d y=\mathcal{N}\left(x ; \mu_{x}, \Sigma_{x x}\right)
$$

+ (linear) conditionals of Gaussians are Gaussians

$$
p(x \mid y)=\frac{p(x, y)}{p(y)}=\mathcal{N}\left(x ; \mu_{x}+\Sigma_{x y} \Sigma_{y y}^{-1}\left(y-\mu_{y}\right), \Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{y x}\right)
$$

+ linear projections of Gaussians are Gaussians

$$
p(z)=\mathcal{N}(z ; \mu, \Sigma) \quad \Rightarrow \quad p(A z)=\mathcal{N}\left(A z, A \mu, A \Sigma A^{\top}\right)
$$

Bayesian inference becomes linear algebra

$$
\begin{gathered}
p(x)=\mathcal{N}(x ; \mu, \Sigma) \quad p(y \mid x)=\mathcal{N}\left(y ; A^{\top} x+b, \Lambda\right) \\
p\left(B^{\top} x+c \mid y\right)=\mathcal{N}\left[B^{\top} x+c ; B^{\top} \mu+c+B^{\top} \Sigma A\left(A^{\top} \Sigma A+\Lambda\right)^{-1}\left(y-A^{\top} \mu-b\right),\right. \\
\left.B^{\top} \Sigma B-B^{\top} \Sigma A\left(A^{\top} \Sigma A+\Lambda\right)^{-1} A^{\top} \Sigma B\right]
\end{gathered}
$$

A Minimal Machine Learning Setup

nonlinear regression problem

Gaussian Parametric Regression

aka. general linear least-squares

$$
\begin{array}{rlrl}
f(x) & =\phi(x)^{\top} \mathbf{w}=\sum_{i} w_{i} \phi_{i}(x) & p(\mathbf{w})=\mathcal{N}(\mathbf{w} ; \mu, \Sigma) \\
\Rightarrow & p(f) & =\mathcal{N}\left(f, \phi^{\top} \mu, \phi^{\top} \Sigma \phi\right) & \phi_{i}(x)=\mathbb{I}\left(x>a_{i}\right) \cdot c_{i}\left(x-a_{i}\right) \tag{RELU}
\end{array}
$$

Gaussian Parametric Regression

aka. general linear least-squares

$$
\begin{array}{rll}
f(x) & =\phi(x)^{\top} \mathbf{w}=\sum_{i} w_{i} \phi_{i}(x) & p(\mathbf{w})=\mathcal{N}(\mathbf{w} ; \mu, \Sigma) \\
\Rightarrow & p(f) & =\mathcal{N}\left(f, \phi^{\top} \mu, \phi^{\top} \Sigma \phi\right) \tag{RELU}
\end{array} \quad \phi_{i}(x)=\mathbb{I}\left(x>a_{i}\right) \cdot c_{i}\left(x-a_{i}\right)
$$

Gaussian Parametric Regression

aka. general linear least-squares

The Choice of Prior Matters

Bayesian framework provides flexible yet explicit modelling language

$$
\phi_{i}(x)=\theta \exp \left(-\frac{\left(x-c_{i}\right)^{2}}{2 \lambda^{2}}\right)
$$

The Choice of Prior Matters

Bayesian framework provides flexible yet explicit modelling language

$$
\phi_{i}(x)=\theta \exp \left(-\frac{\left(x-c_{i}\right)^{2}}{2 \lambda^{2}}\right)
$$

popular extension no. 1 requires large-scale linear algebra

$$
\begin{aligned}
& p\left(f_{x} \mid y, \phi_{x}\right)=\mathcal{N}\left(f_{x} ; \phi_{x}^{\top} \mu+\phi_{x}^{\top} \Sigma \phi_{x}\left(\phi_{x}^{\top} \Sigma \phi_{x}+\sigma^{2} I\right)^{-1}\left(y-\phi_{x}^{\top} \mu\right),\right. \\
&\left.\phi_{x}^{\top} \Sigma \phi_{x}-\phi_{x}^{\top} \Sigma \phi_{x}\left(\phi_{x}^{\top} \Sigma \phi_{x}+\sigma^{2}\right)^{-1} \phi_{x}^{\top} \Sigma \phi_{x}\right)
\end{aligned}
$$

+ set $\mu=0$
+ aim for closed-form expression of kernel $\phi_{a}^{\top} \Sigma \phi_{b}$

Features are cheap, so let's use a lot

+ For simplicity, let's fix $\Sigma=\frac{\sigma^{2}\left(c_{\max }-c_{\min }\right)}{F} /$
thus: $\phi\left(x_{i}\right)^{\top} \Sigma \phi\left(x_{j}\right)=\frac{\sigma^{2}\left(c_{\max }-c_{\min }\right)}{F} \sum_{\ell=1}^{F} \phi_{\ell}\left(x_{i}\right) \phi_{\ell}\left(x_{j}\right)$
+ especially, for $\phi_{\ell}(x)=\exp \left(-\frac{\left(x-c_{\ell}\right)^{2}}{2 \lambda^{2}}\right)$

$$
\begin{aligned}
& \phi\left(x_{i}\right)^{\top} \sum \phi\left(x_{j}\right) \\
& =\frac{\sigma^{2}\left(c_{\max }-c_{\min }\right)}{F} \sum_{\ell=1}^{F} \exp \left(-\frac{\left(x_{i}-c_{\ell}\right)^{2}}{2 \lambda^{2}}\right) \exp \left(-\frac{\left(x_{j}-c_{\ell}\right)^{2}}{2 \lambda^{2}}\right) \\
& =\frac{\sigma^{2}\left(c_{\max }-c_{\min }\right)}{F} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \lambda^{2}}\right) \sum_{\ell}^{F} \exp \left(-\frac{\left(c_{\ell}-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)^{2}}{\lambda^{2}}\right)
\end{aligned}
$$

Features are cheap, so let's use a lot

$$
\begin{aligned}
& \phi\left(x_{i}\right)^{\top} \sum \phi\left(x_{j}\right)= \\
& \quad \frac{\sigma^{2}\left(c_{\max }-c_{\min }\right)}{F} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \lambda^{2}}\right) \sum_{\ell}^{F} \exp \left(-\frac{\left(c_{\ell}-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)^{2}}{\lambda^{2}}\right)
\end{aligned}
$$

+ now increase F so \# of features in δc approaches $\frac{F \cdot \delta c}{\left(c_{\max }-c_{\min }\right)}$

$$
\begin{aligned}
& \phi\left(x_{i}\right)^{\top} \sum \phi\left(x_{j}\right) \rightarrow \\
& \sigma^{2} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \lambda^{2}}\right) \int_{c_{\min }}^{c_{\max }} \exp \left(-\frac{\left(c-\frac{1}{2}\left(x_{i}+x_{j}\right)\right)^{2}}{\lambda^{2}}\right) d c
\end{aligned}
$$

+ let $c_{\text {min }} \rightarrow-\infty, c_{\text {max }} \rightarrow \infty$

$$
k\left(x_{i}, x_{j}\right):=\phi\left(x_{i}\right)^{\top} \Sigma \phi\left(x_{j}\right) \rightarrow \sqrt{2 \pi} \lambda \sigma^{2} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{4 \lambda^{2}}\right)
$$

Gaussian Process Regression

aka. Kriging, kernel-ridge regression,.

$$
p(f)=\mathcal{G P}(0, k) \quad k(a, b)=\exp \left(-\frac{(a-b)^{2}}{2 \lambda^{2}}\right)
$$

Gaussian Process Regression

aka. Kriging, kernel-ridge regression,...

The prior still matters

just one other example out of the space of kernels

For $\phi_{i}(x)=\mathbb{I}\left(x>c_{i}\right)\left(x-c_{i}\right)$, an analogous limit gives

The prior still matters

$p(f)=\mathcal{G} \mathcal{P}(0, k)$ with $k(a, b)=\theta^{21 / 3} \min (a, b)^{3}+|a-b| \min (a, b)^{2}$. the integrated Wiener process, aka. cubic splines.

More on GPs in Paris Perdikaris' tutorial.
more on nonparametric models in Neil Lawrence's and Tamara Broderick's talks?

The Computational Challenge

large-scale linear algebra

$$
\alpha:=\underbrace{\left(k_{x X}+\sigma^{2} I\right)^{-1}}_{\in \mathbb{R}^{N \times N} \text {, symm. pos. def. }} y \quad k_{a X}\left(k_{X X}+\sigma^{2} I\right)^{-1} k_{X b} \quad \log \left|k_{X X}+\sigma^{2} I\right|
$$

The Computational Challenge

$$
\alpha:=\underbrace{\left(k_{X X}+\sigma^{2} I\right)^{-1}} \text { y } \quad k_{a X}\left(k_{X X}+\sigma^{2} I\right)^{-1} k_{X b} \quad \log \left|k_{X X}+\sigma^{2}\right| \mid
$$

Methods in wide use：

+ exact linear algebra（BLAS），for $N \lesssim 10^{4}$（because $\mathcal{O}\left(N^{3}\right)$ ）
＋（rarely：）iterative Krylov solvers（in part．conjugate gradients），for $N \lesssim 10^{5}$ For large－scale $\left(\mathcal{O}\left(N M^{2}\right)\right)$ ：
＋inducing point methods，Nyström，etc．： using iid．structure of data

$$
k_{a b} \approx \tilde{k}_{a u} \Omega^{-1} \tilde{k}_{u b} \quad \Omega^{-1} \in \mathbb{R}^{M \times M}
$$

目 Williams \＆Seeger，2001；䀠 Quiñonero \＆Rasmussen，2005；目 Snelson \＆Ghahramani，2007；䀠 Titsias， 2009
＋spectral expansions using algebraic properties of kernel

目 Rahimi \＆Recht 2008； 2009
＋in univariate setting：filtering using Markov structure

䀠 Särkkä 2013
Both are linear time，with finite error．Bridge to iterative methods is beginning to form，via sub－space recycling（目 de Roos \＆P．H．，arXiv 1706.00241 2017）

popular extensions no. 2:

requires large-scale nonlinear optimization

Maximum Likelihood estimation: Assume $\phi(x)=\phi_{\theta}(x)$

$$
L(y ; \theta, w)=\log p(y \mid \phi, w)=\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left\|y_{i}-\phi_{\theta}\left(x_{i}\right)^{\top} w\right\|^{2}+\text { const. }
$$

(A feed-forward network)

Learning Features

a (in general) non-convex, non-linear optimization problem

$$
\begin{aligned}
L(y ; \theta, w)=\log p(y \mid \phi, w) & =\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left\|y_{i}-\phi_{\theta}\left(x_{i}\right)^{\top} w\right\|^{2}+\text { const. } \\
\nabla_{\theta} L & =\frac{1}{\sigma^{2}} \underbrace{\sum_{i=1}^{N}-\left(y_{i}-\phi_{\theta}\left(x_{i}\right)^{\top} w\right) \cdot w^{\top} \nabla_{\theta} \phi\left(x_{i}\right)}_{\text {"back-propagation" }}
\end{aligned}
$$

Deep Learning

(really just a quick peek)

in practice:

+ multiple input dimensions (e.g. pixel intensities)
+ multi-dimensional output (e.g. structured sentences)
+ multiple feature layers
+ structured layers (convolutions, pooling, pyramids, etc.)

Deep Learning has become Mainstream

an increasingly professional industry

Krizhevsky, Sutskever \& Hinton
"ImageNet Classification with Deep Convolutional Neural Networks"
Adv. in Neural Information Processing Systems (NIPS 2012) 25, pp. 1097-1105

. . . and continues to impress

predicting whole-image semantic labels

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

two young girls are playing with lego toy.

boy is doing backflip on wakeboard

Karpathy \& Fei-Fei."Deep Visual-Semantic Alignments for Generating Image Descriptions". Computer Vision and Pattern Recognition (CVPR 2015)

The Computational Challenge

high－dimensional，non－convex，stochastic optimization

+ contemporary problems are extremely high－dimensional $N>10^{7}$
＋typically badly conditioned 首 Chaudhari et al．arXiv 1611.01838
＋optimizer interacts with model
目 Chaudhari et al．arXiv 1611．01838，首 Keskar et al．，1609．04836
＋biggest challenge：stochasticity

$$
\begin{aligned}
\mathcal{L}(\theta) & =\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i} ; \boldsymbol{\theta}\right) \approx \frac{1}{M} \sum_{j=1}^{M} \ell\left(y_{j} ; \boldsymbol{\theta}\right)=: \hat{\mathcal{L}}(\boldsymbol{\theta}) \quad M \ll N \\
p(\hat{\mathcal{L}} \mid \mathcal{L}) & \approx \mathcal{N}\left(\hat{\mathcal{L}} ; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{M}\right)\right)
\end{aligned}
$$

classic optimization paradigms break down．
＋currently dominant optimizers are surprisingly simple：
＋stochastic gradient descent
＋RMSPROP
＋ADADELTA
＋ADAM
Robbins \＆Monro， 1951
Tielemann \＆Hinton，unpublished
Zeiler，arXiv 1212.5701
Kingma \＆Ba，ICLR 2015
more in part II ．．．

popular extension no. 3 requires

high-dimensional integration of probability measures

+ in $p(f)=\mathcal{G} \mathcal{P}(0, k)$, what should k be?
+ parametrize $k=k^{\theta}, \mu=\mu^{\theta}, \Lambda=\Lambda^{\theta}$

$$
\begin{aligned}
p(y \mid \theta) & =\int p(y \mid f, \theta) p(f \mid \theta) d f=\int \mathcal{N}\left(y ; f_{x}, \wedge^{\theta}\right) \mathcal{G} \mathcal{P}\left(f ; \mu^{\theta}, k^{\theta}\right) \\
& =\mathcal{N}\left(y, \mu_{x}^{\theta}, \wedge^{\theta}+k_{x x}^{\theta}\right) \\
p(f \mid y) & =\int p(f \mid y, \theta) p(\theta \mid y) d \theta
\end{aligned}
$$

Learning the kernel

hierarchical Bayesian inference

+ practical cases can be extremely high-dimensional $(\rightarrow$ Bayesian deep learning)
+ standard approaches:
+ free energy minimization of a parametric approximation
+ Markov Chain Monte Carlo
+ elaborate toolboxes available
$(\rightarrow$ probabilistic programming)
+ but few (practically relevant) finite-time guarantees
more about hierarchical Bayesian inference in Tamara Broderick's talk?

The Optimization View on Hierarchical Inference

Bayesian Optimization

+ non-convex (multi-moda!!) global optimization
+ expensive evaluations

Summary: The Computations of Acting Agents

+ machine intelligence requires computations
+ integration for marginalization
+ optimization for fitting
+ differential equations for control
+ linear algebra for all of the above
+ contemporary Al problems pose very challenging numerical problems
+ uncertainty from data-subsampling plays a crucial, intricate role
+ classic numerical methods leave room for improvement
after coffee:
Learning machines don't just pose problems-they also promise some answers.

Is there room at the bottom?

task ...	\ldots amounts to \ldots	\ldots using black box
marginalize	integration	MCMC, Variational, EP, ...
train/fit	optimization	SGD et al., quasi-Nwton, ...
predict/control	ord. diff. Eq.	Euler, Runge-Kutta, ..
Gauss/kernel/LSq.	linear Algebra	Chol., CG, spectral, low-rank,...

+ Scientific computing has produced a very efficient toolchain, but we are (usually) only using generic methods!
+ methods on loan do not address some of ML's special needs
+ overly generic algorithms are inefficient
+ Big Data-specific challenges not addressed by "classic" methods
ML deservers customized numerical methods.
And as it turns out, we already have the right concepts!

Computation is Inference

Numerical methods estimate latent quantities given the result of computations.
integration
linear algebra
optimization
analysis
estimate $\int_{a}^{b} f(x) d x$
estimate \boldsymbol{x} s.t. $\boldsymbol{A x}=\boldsymbol{b}$
estimate \boldsymbol{x} s.t. $\nabla f(x)=0$
estimate $\boldsymbol{x}(t)$ s.t. $x^{\prime}=f(x, t)$
given $\left\{f\left(x_{i}\right)\right\}$
given $\{A s=y\}$
given $\left\{\nabla f\left(x_{i}\right)\right\}$
given $\left\{f\left(x_{i}, t_{i}\right)\right\}$

It is thus possible to build probabilistic numerical methods that use probability measures as in- and outputs, and assign a notion of uncertainty to computation.

Integration

$$
f(x)=\exp \left(-\sin (3 x)^{2}-x^{2}\right) \quad F=\int_{-3}^{3} f(x) d x=?
$$

A Wiener process prior $p(f, F)$...

$$
\begin{aligned}
p(f) & =\mathcal{G} \mathcal{P}(f ; 0, k) \quad k\left(x, x^{\prime}\right)=\min \left(x, x^{\prime}\right)+c \\
\Rightarrow p\left(\int_{a}^{b} f(x) d x\right) & =\mathcal{N}\left[\int_{a}^{b} f(x) d x ; \int_{a}^{b} m(x) d x, \iint_{a}^{b} k\left(x, x^{\prime}\right) d x d x^{\prime}\right] \\
& =\mathcal{N}\left(F ; 0,-1 / 6\left(b^{3}-a^{3}\right)+1 / 2\left[b^{3}-2 a^{2} b+a^{3}\right]-(b-a)^{2} c\right)
\end{aligned}
$$

...conditioned on actively collected information ...

computation as the collection of information

+ maximal reduction of variance yields regular grid

...conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

...conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

...conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

...conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

...conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

...conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

... conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

... conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

...conditioned on actively collected information ...

computation as the collection of information

+ maximal reduction of variance yields regular grid

...conditioned on actively collected information ...

computation as the collection of information

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

. . . yields the trapezoid rule!

+ Trapezoid rule is MAP estimate under Wiener process prior on f
+ regular grid is optimal expected information choice
+ error estimate is under-confident

Computation as Inference

Estimate \boldsymbol{z} from computations c, under model m.

$$
p(z \mid c, m)=\frac{p(z \mid m) p(c \mid z, m)}{\int p(z \mid m) p(c \mid z, m) d z}
$$

Classic methods as basic probabilistic inference

maximum a-posteriori estimation in Gaussian models

[Ajne \& Dalenius 1960; Kimeldorf \& Wahba

Linear Algebra
[Hennig 2014]
Conjugate Gradients \longleftrightarrow Gaussian Regression

Nonlinear Optimization
[Hennig \& Kiefel 2013]
BFGS / Quasi-Newton \longleftrightarrow Autoregressive Filtering
[Schober, Duvenaud \& Hennig 2014; Kerst-
Differential Equations ing \& Hennig 2016; Schober \& Hennig 2016]
Runge-Kutta; Nordsieck Methods \longleftrightarrow Gauss-Markov Filters

Probabilistic ODE Solvers

: Schober, Duvenaud \& P.H., 2014. Schober \& P.H., 2016. Kersting \& P.H., 2016,

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ this method \rightarrow Hans Kersting's talk.
+ calibration \rightarrow Oksana Chkrebtii's talk.
+ convergence \rightarrow Tim Sullivan's talk.

Probabilistic ODE Solvers

R Schober, Duvenaud \& P.H., 2014. Schober \& P.H., 2016. Kersting \& P.H., 2016,

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ this method \rightarrow Hans Kersting's talk.
+ calibration \rightarrow Oksana Chkrebtii's talk.
+ convergence \rightarrow Tim Sullivan's talk.

Probabilistic ODE Solvers

R Schober, Duvenaud \& P.H., 2014. Schober \& P.H., 2016. Kersting \& P.H., 2016,

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ this method \rightarrow Hans Kersting's talk.
+ calibration \rightarrow Oksana Chkrebtii's talk.
+ convergence \rightarrow Tim Sullivan's talk.

Probabilistic ODE Solvers

_ Schober, Duvenaud \& P.H., 2014. Schober \& P.H., 2016. Kersting \& P.H., 2016,

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ this method \rightarrow Hans Kersting's talk.
+ calibration \rightarrow Oksana Chkrebtii's talk.
+ convergence \rightarrow Tim Sullivan's talk.

Probabilistic ODE Solvers

_ Schober, Duvenaud \& P.H., 2014. Schober \& P.H., 2016. Kersting \& P.H., 2016,

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ this method \rightarrow Hans Kersting's talk.
+ calibration \rightarrow Oksana Chkrebtii's talk.
+ convergence \rightarrow Tim Sullivan's talk.

Probabilistic ODE Solvers

_ Schober, Duvenaud \& P.H., 2014. Schober \& P.H., 2016. Kersting \& P.H., 2016,

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ this method \rightarrow Hans Kersting's talk.
+ calibration \rightarrow Oksana Chkrebtii's talk.
+ convergence \rightarrow Tim Sullivan's talk.

Probabilistic ODE Solvers

R Schober, Duvenaud \& P.H., 2014. Schober \& P.H., 2016. Kersting \& P.H., 2016,

$$
x^{\prime}(t)=f(x(t), t), \quad x\left(t_{0}\right)=x_{0}
$$

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ this method \rightarrow Hans Kersting's talk.
+ calibration \rightarrow Oksana Chkrebtii's talk.
+ convergence \rightarrow Tim Sullivan's talk.
+ Probabilistic numerics can be as fast and reliable as classic ones.
+ Computation can be phrased on ML language!
+ Meaningful (calibrated) uncertainty can be constructed at minimal computational overhead (dominated by cost of point estimate)

So what does this mean for Data Science / ML / Al?

New Functionality, and new Challenges

making use of the probabilistic numerics perspective

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) R Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

a prior specifically for integration of probability measures
$+f>0$ (f is probability measure)
$+f \propto \exp \left(-x^{2}\right)$ (f is product of prior and likelihood terms)
$+f \in \mathcal{C}^{\infty}$ (f is smooth)
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) 吊 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) 吊 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) 吊 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) 吊 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) 吊 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) 吊 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) 吊 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

An integration prior for probability measures

WArped Sequential Active Bayesian Integration (WSABI) 吊 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.
e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi's tutorial?

Computation as Inference

new numerical functionality for machine learning

Estimate z from computations c, under model m.

New numerics for Big Data

In Big Data setting, batching introduces (Gaussian) noise

$$
\begin{aligned}
\mathcal{L}(\theta) & =\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i} ; \boldsymbol{\theta}\right) \approx \frac{1}{M} \sum_{j=1}^{M} \ell\left(y_{j} ; \theta\right)=: \hat{\mathcal{L}}(\theta) \quad M \ll N \\
p(\hat{\mathcal{L}} \mid \mathcal{L}) & \approx \mathcal{N}\left(\hat{\mathcal{L}} ; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{M}\right)\right)
\end{aligned}
$$

New numerics for Big Data

In Big Data setting, batching introduces (Gaussian) noise

$$
\begin{aligned}
\mathcal{L}(\theta) & =\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i} ; \boldsymbol{\theta}\right) \approx \frac{1}{M} \sum_{j=1}^{M} \ell\left(y_{j} ; \theta\right)=: \hat{\mathcal{L}}(\theta) \quad M \ll N \\
p(\hat{\mathcal{L}} \mid \mathcal{L}) & \approx \mathcal{N}\left(\hat{\mathcal{L}} ; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{M}\right)\right)
\end{aligned}
$$

Classic methods are unstable to noise. E.g.: step size selection

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\alpha_{t} \nabla \hat{\mathcal{L}}\left(\theta_{t}\right)
$$

Probabilistic Line Searches

classic line search: unstable

step size t

probabilistic line search: stable

two-layer feed-forward perceptron on CIFAR 10. Details, additional results in Mahsereci \& Hennig, NIPS 2015.

https://github.com/ProbabilisticNumerics/probabilistic_line_search

+ batch-size selection early stopping search directions
cabs
: Balles \& Hennig, arXiv 1612.05086
䡒 Mahsereci, Balles \& Hennig, arXiv 1703.09580 sodas

目 Balles \& Hennig, arXiv 1705.07774

Computation as Inference

new numerical functionality for machine learning

Estimate \boldsymbol{z} from computations c, under model m.

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

Uncertainty Across Composite Computations

+ probabilistic numerical methods taking and producing uncertain inputs and outputs allow management of computational resources
more on uncertainty propagation in Ilias Bilionis' talk.

Computation as Inference

Estimate z from computations c, under model m.

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

Probabilistic Certification?

proof of concept: E Hennig, Osborne, Girolami. Proc. Royal Society A, 2015

Summary

+ computation is inference \rightarrow probabilistic numerical methods
+ probability measures for uncertain inputs and outputs
+ classic methods as special cases

New concepts not just for Machine Learning:
prior: structural knowledge reduces complexity
likelihood: imprecise computation lowers cost
posterior: uncertainty propagated through computations
evidence: model mismatch detectable at run-time

+ ML \& Al pose new computational challenges
+ computational methods can be phrased in the concepts of ML
+ but related results of mathematics are currently "under-explored"
+ more about all of this in this seminar!

