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Part I: The computations of acting agents 09:00–09:45
d a minimal introduction to machine learning
d the computational tasks of learning agents
d some special challenges, some house numbers

Part II: The agents acting in computations 10:30–11:15
d computation is inference
d new challenges require new answers
d a computer science view on numerical computations
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An Acting Agent
autonomous interaction with a data-source from Hennig, Osborne, Girolami, Proc. Roy. Soc. A, 2015
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The Very Foundation
probabilistic inference

p(x | D) = p(x)p(D | x)∫ p(x)p(D | x) dx
prior explicit representation of assumptions about latent variables

likelihood explicit representation of assumptions about generation of data
posterior structured uncertainty over prediction
evidence marginal likelihood of model

N (x;µ,Σ) = 1√2π|Σ| exp
(
− 1

2 (x− µ)ᵀΣ−1(x− µ)
)
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Gaussian Inference
the link between probabilistic inference and linear algebra

d products of Gaussians are Gaussians C := (A−1 + B−1)−1 c := C(A−1a + B−1b)
N (x; a, A)N (x; b, B) = N (x; c, C)N (a; b, A + B)

d marginals of Gaussians are Gaussians∫
N
[(xy

)
;
(
µx
µy
)

,
(
Σxx Σxy
Σyx Σyy

)]
dy = N (x;µx,Σxx)

d (linear) conditionals of Gaussians are Gaussians
p(x | y) = p(x, y)p(y) = N (x;µx + ΣxyΣ−1yy (y − µy),Σxx − ΣxyΣ−1yy Σyx

)
d linear projections of Gaussians are Gaussians

p(z) = N (z;µ,Σ) ⇒ p(Az) = N (Az, Aµ, AΣAᵀ)
Bayesian inference becomes linear algebra

p(x) = N (x;µ,Σ) p(y | x) = N (y; Aᵀx + b,Λ)
p(Bᵀx + c | y) = N [Bᵀx + c; Bᵀµ + c + BᵀΣA(AᵀΣA + Λ)−1(y − Aᵀµ− b),

BᵀΣB− BᵀΣA(AᵀΣA + Λ)−1AᵀΣB]
4



A Minimal Machine Learning Setup
nonlinear regression problem
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p(y | fX) = N (y; fX ,σI)
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Gaussian Parametric Regression
aka. general linear least-squares
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f(x) = φ(x)ᵀw =∑
i

wiφi(x) p(w) = N (w;µ,Σ)
⇒ p(f) = N (f ,φᵀµ,φᵀΣφ) φi(x) = I(x > ai) · ci(x− ai) (RELU)
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Gaussian Parametric Regression
aka. general linear least-squares

p(y | w,φX) = N (y;φᵀXw,σ2I)
p(fx | y,φX) = N (fx;φᵀx µ + φᵀx ΣφX(φᵀXΣφX + σ2I)−1(y − φᵀXµ),

φᵀx Σφx − φᵀx ΣφX(φᵀXΣφX + σ2I)−1φᵀXΣφx)
6



The Choice of Prior Matters
Bayesian framework provides flexible yet explicit modelling language

φi(x) = θ exp
(
− (x− ci)22λ2

)
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popular extension no. 1requires large-scale linear algebra
p(fx | y,φX) = N (fx;φᵀx µ + φᵀx ΣφX(φᵀXΣφX + σ2I)−1(y − φᵀXµ),

φᵀx Σφx − φᵀx ΣφX(φᵀXΣφX + σ2I)−1φᵀXΣφx)

d set µ = 0
d aim for closed-form expression of kernel φᵀaΣφb
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Features are cheap, so let’s use a lot
an example [DJC MacKay, 1998]

d For simplicity, let’s fix Σ = σ2(cmax−cmin)F I
thus: φ(xi)ᵀΣφ(xj) = σ2(cmax − cmin)F

F∑
`=1

φ`(xi)φ`(xj)

d especially, for φ`(x) = exp
(
− (x− c`)22λ2

)

φ(xi)ᵀΣφ(xj)
= σ2(cmax − cmin)F

F∑
`=1

exp
(
− (xi − c`)22λ2

)
exp
(
− (xj − c`)22λ2

)

= σ2(cmax − cmin)F exp
(
− (xi − xj)24λ2

) F∑
`

exp
(
− (c` − 12 (xi + xj))2

λ2
)
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Features are cheap, so let’s use a lot
an example [DJC MacKay, 1998]

φ(xi)ᵀΣφ(xj) =
σ2(cmax − cmin)F exp

(
− (xi − xj)24λ2

) F∑
`

exp
(
− (c` − 12 (xi + xj))2

λ2
)

d now increase F so # of features in δc approaches F·δc(cmax−cmin)
φ(xi)ᵀΣφ(xj)_
σ2 exp

(
− (xi − xj)24λ2

)∫ cmax

cmin
exp
(
− (c− 12 (xi + xj))2

λ2
)

dc
d let cmin _−∞, cmax _∞

k(xi, xj) := φ(xi)ᵀΣφ(xj)_√2πλσ2 exp
(
− (xi − xj)24λ2

)
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Gaussian Process Regression
aka. Kriging, kernel-ridge regression,. . .

p(f) = GP(0, k) k(a, b) = exp
(
− (a− b)2

2λ2
)
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Gaussian Process Regression
aka. Kriging, kernel-ridge regression,. . .

p(f | y) = GP(fx; kxX(kXX + σ2I)−1y, kxx − kxX(kXX + σ2I)−1kXx)
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The prior still matters
just one other example out of the space of kernels

For φi(x) = I(x > ci)(x− ci), an analogous limit gives
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The prior still matters
just one other example out of the space of kernels

p(f) = GP(0, k) with k(a, b) = θ21/3min(a, b)3 + |a− b|min(a, b)2.the integrated Wiener process, aka. cubic splines.
More on GPs in Paris Perdikaris’ tutorial.
more on nonparametric models in Neil Lawrence’s and Tamara Broderick’s talks?
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The Computational Challenge
large-scale linear algebra

α := (kXX + σ2I)−1
︸ ︷︷ ︸

∈ RN×N , symm. pos. def.
y kaX(kXX + σ2I)−1kXb log |kXX + σ2I|

Methods in wide use:
d exact linear algebra (BLAS), for N . 104 (becauseO(N3))
d (rarely:) iterative Krylov solvers (in part. conjugate gradients), for N . 105

For large-scale (O(NM2)):
d inducing point methods, Nyström, etc.: using iid. structure of data

kab ≈ k̃auΩ−1k̃ub Ω−1 ∈ RM×M
Williams & Seeger, 2001; Quiñonero & Rasmussen, 2005;Snelson & Ghahramani, 2007; Titsias, 2009

d spectral expansions using algebraic properties of kernelRahimi & Recht 2008; 2009
d in univariate setting: filtering using Markov structureSärkkä 2013Both are linear time, with finite error. Bridge to iterative methods is beginningto form, via sub-space recycling ( de Roos & P.H., arXiv 1706.00241 2017)
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popular extensions no. 2:requires large-scale nonlinear optimization
Maximum Likelihood estimation: Assume φ(x) = φθ(x)

L(y; θ,w) = log p(y | φ,w) = 1
2σ2

N∑
i=1
‖yi − φθ(xi)ᵀw‖2 + const.

xi

yi

φ1(xi) φ2(xi) φ...(xi) φ...(xi) φM(xi)
w

θ

(A feed-forward network)
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Learning Features
a (in general) non-convex, non-linear optimization problem

L(y; θ,w) = log p(y | φ,w) = 1
2σ2

N∑
i=1
‖yi − φθ(xi)ᵀw‖2 + const.

∇θL = 1
σ2

N∑
i=1
−(yi − φθ(xi)ᵀw) · wᵀ∇θφ(xi)

︸ ︷︷ ︸“back-propagation”
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Deep Learning
(really just a quick peek)

in practice:
d multiple input dimensions (e.g. pixel intensities)
d multi-dimensional output (e.g. structured sentences)
d multiple feature layers
d structured layers (convolutions, pooling, pyramids, etc.)

x1i x2 ... ... xM0i

φ1i φ2i ... ... φM1i

ξ1 ξ2 ... ... ξM2i

y1i y2i ... ... yMoi
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Deep Learning has become Mainstream
an increasingly professional industry

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

Krizhevsky, Sutskever & Hinton“ImageNet Classification with Deep Convolutional Neural Networks”
Adv. in Neural Information Processing Systems (NIPS 2012) 25, pp. 1097–1105
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. . . and continues to impress
predicting whole-image semantic labels

Flickr8K Flickr30K MSCOCO 2014
Model B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 METEOR CIDEr
Nearest Neighbor — — — — — — — — 48.0 28.1 16.6 10.0 15.7 38.3
Mao et al. [38] 58 28 23 — 55 24 20 — — — — — — —
Google NIC [54] 63 41 27 — 66.3 42.3 27.7 18.3 66.6 46.1 32.9 24.6 — —
LRCN [8] — — — — 58.8 39.1 25.1 16.5 62.8 44.2 30.4 — — —
MS Research [12] — — — — — — — — — — — 21.1 20.7 —
Chen and Zitnick [5] — — — 14.1 — — — 12.6 — — — 19.0 20.4 —
Our model 57.9 38.3 24.5 16.0 57.3 36.9 24.0 15.7 62.5 45.0 32.1 23.0 19.5 66.0

Table 2. Evaluation of full image predictions on 1,000 test images. B-n is BLEU score that uses up to n-grams. High is good in all columns.
For future comparisons, our METEOR/CIDEr Flickr8K scores are 16.7/31.8 and the Flickr30K scores are 15.3/24.7.

Figure 6. Example sentences generated by the multimodal RNN for test images. We provide many more examples on our project page.

4.2. Generated Descriptions: Fulframe evaluation
We now evaluate the ability of our RNN model to describe
images and regions. We first trained our Multimodal RNN
to generate sentences on full images with the goal of veri-
fying that the model is rich enough to support the mapping
from image data to sequences of words. For these full im-
age experiments we use the more powerful VGGNet image
features [47]. We report the BLEU [44], METEOR [7] and
CIDEr [53] scores computed with the coco-caption
code [4] 2. Each method evaluates a candidate sentence
by measuring how well it matches a set of five reference
sentences written by humans.

Qualitative. The model generates sensible descriptions of
images (see Figure 6), although we consider the last two
images failure cases. The first prediction “man in black
shirt is playing a guitar” does not appear in the training set.
However, there are 20 occurrences of “man in black shirt”
and 60 occurrences of “is paying guitar”, which the model
may have composed to describe the first image. In general,
we find that a relatively large portion of generated sentences
(60% with beam size 7) can be found in the training data.
This fraction decreases with lower beam size; For instance,
with beam size 1 this falls to 25%, but the performance also
deteriorates (e.g. from 0.66 to 0.61 CIDEr).

Multimodal RNN outperforms retrieval baseline. Our
first comparison is to a nearest neighbor retrieval baseline.

2https://github.com/tylin/coco-caption

Here, we annotate each test image with a sentence of the
most similar training set image as determined by L2 norm
over VGGNet [47] fc7 features. Table 2 shows that the Mul-
timodal RNN confidently outperforms this retrieval method.
Hence, even with 113,000 train set images in MSCOCO
the retrieval approach is inadequate. Additionally, the RNN
takes only a fraction of a second to evaluate per image.

Comparison to other work. Several related models have
been proposed in Arxiv preprints since the original submis-
sion of this work. We also include these in Table 2 for com-
parison. Most similar to our model is Vinyals et al. [54].
Unlike this work where the image information is commu-
nicated through a bias term on the first step, they incorpo-
rate it as a first word, they use a more powerful but more
complex sequence learner (LSTM [20]), a different CNN
(GoogLeNet [51]), and report results of a model ensemble.
Donahue et al. [8] use a 2-layer factored LSTM (similar
in structure to the RNN in Mao et al. [38]). Both models
appear to work worse than ours, but this is likely in large
part due to their use of the less powerful AlexNet [28] fea-
tures. Compared to these approaches, our model prioritizes
simplicity and speed at a slight cost in performance.

4.3. Generated Descriptions: Region evaluation
We now train the Multimodal RNN on the correspondences
between image regions and snippets of text, as inferred by
the alignment model. To support the evaluation, we used
Amazon Mechanical Turk (AMT) to collect a new dataset
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Karpathy & Fei-Fei.“Deep Visual-Semantic Alignments for Generating Image Descriptions”. Computer Vision and Pattern Recognition (CVPR 2015)

Published as a conference paper at ICLR 2017

Figure 11: Generation from augmented-patch version of the LSUN bedroom dataset. Left(a): DC-
GAN generation. Right(b): EBGAN-PT generation.

Figure 12: Generation from whole-image version of the LSUN bedroom dataset. Left(a): EBGAN.
Right(b): EBGAN-PT.
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The Computational Challenge
high-dimensional, non-convex, stochastic optimization

d contemporary problems are extremely high-dimensional N > 107
d typically badly conditioned Chaudhari et al. arXiv 1611.01838
d optimizer interacts with modelChaudhari et al. arXiv 1611.01838, Keskar et al., 1609.04836
d biggest challenge: stochasticity

L(θ) = 1
N

N∑
i=1
`(yi;θ) ≈ 1

M
M∑
j=1
`(yj;θ) =: L̂(θ) M� N

p(L̂ | L) ≈ N
(
L̂;L,O

(N− M
M

))

classic optimization paradigms break down.
d currently dominant optimizers are surprisingly simple:

d stochastic gradient descent Robbins & Monro, 1951
d RMSPROP Tielemann & Hinton, unpublished
d ADADELTA Zeiler, arXiv 1212.5701
d ADAM Kingma & Ba, ICLR 2015

more in part II . . . 19



popular extension no. 3 requireshigh-dimensional integration of probability measures
d in p(f) = GP(0, k), what should k be?
d parametrize k = kθ ,µ = µθ ,Λ = Λθ

p(y | θ) =
∫

p(y | f , θ)p(f | θ) df =
∫
N (y; fX ,Λθ)GP(f ;µθ , kθ)

= N (y,µθX ,Λθ + kθXX)
p(f | y) =

∫
p(f | y, θ)p(θ | y) dθ

20



Learning the kernel
hierarchical Bayesian inference

d practical cases can be extremely high-dimensional(_ Bayesian deep learning)
d standard approaches:

d free energy minimization of a parametric approximation
d Markov Chain Monte Carlo

d elaborate toolboxes available (_ probabilistic programming)
d but few (practically relevant) finite-time guarantees

more about hierarchical Bayesian inference in Tamara Broderick’s talk?
21



The Optimization View on Hierarchical Inference
Bayesian Optimization

machineenvironment

learning / inference / pattern rec. / system id.

predictionaction

D xt θ
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nby
ana

lysis

action by
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optimize architecture

d non-convex (multi-modal!) global optimization
d expensive evaluations

more about optimization of architectures in Roman Garnett’s talk
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Summary: The Computations of Acting Agents
d machine intelligence requires computations

d integration for marginalization
d optimization for fitting
d differential equations for control
d linear algebra for all of the above

d contemporary AI problems pose very challenging numerical problems
d uncertainty from data-subsampling plays a crucial, intricate role
d classic numerical methods leave room for improvement

after coffee:Learning machines don’t just pose problems—they also promise some answers.
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Is there room at the bottom?
ML computations are dominated by numerical tasks

task . . . . . . amounts to . . . . . . using black box
marginalize integration MCMC, Variational, EP, . . .train/fit optimization SGD et al., quasi-Nwton, . . .predict/control ord. diff. Eq. Euler, Runge-Kutta, . . .Gauss/kernel/LSq. linear Algebra Chol., CG, spectral, low-rank,. . .
d Scientific computing has produced a very efficient toolchain, but we are(usually) only using generic methods!
d methods on loan do not address some of ML’s special needs

d overly generic algorithms are inefficient
d Big Data-specific challenges not addressed by “classic” methods

ML deservers customized numerical methods.And as it turns out, we already have the right concepts!
24



Computation is Inference
http://probnum.org Poincaré 1896, Kimeldorf & Wahba 1970, Diaconis 1988, O’Hagan 1992, . . .

Numerical methods estimate latent quantities given the result of computations.
integration estimate ∫ ba f(x) dx given {f(xi)}linear algebra estimate x s.t. Ax = b given {As = y}optimization estimate x s.t. ∇f(x) = 0 given {∇f(xi)}analysis estimate x(t) s.t. x′ = f(x, t) given {f(xi, ti)}

It is thus possible to buildprobabilistic numerical methodsthat use probability measures as in- and outputs,and assign a notion of uncertainty to computation.

25



Integration
as Gaussian regression

−3 −2 −1 0 1 2 3
0

0.5

1

x

f(x)

f(x) = exp(− sin(3x)2 − x2) F =
∫ 3
−3 f(x) dx =?
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A Wiener process prior p(f , F). . .
Bayesian Quadrature O’Hagan, 1985/1991

p(f) = GP(f ; 0, k) k(x, x′) = min(x, x′) + c
⇒ p

(∫ b
a f(x) dx

)
= N

[∫ b
a f(x) dx;

∫ b
a m(x) dx,

∫∫ b
a k(x, x′) dx dx′

]

= N (F; 0,−1/6(b3 − a3) + 1/2[b3 − 2a2b + a3]− (b− a)2c)
27



. . . conditioned on actively collected information . . .
computation as the collection of information

xt = arg min [varp(F|x1 ,...,xt−1)(F)
]

d maximal reduction of variance yields regular grid
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. . . yields the trapezoid rule!
Kimeldorf & Wahba 1975, Diaconis 1988, O’Hagan 1985/1991

−2 0 2−1
−0.5

0
0.5

1

x

f(x)

100 101 10210−10

10−5

100

# evaluations

|F−
F̂|

Ey[F] =
∫

E|y[f(x)] dx = N−1∑

i=1
(xi+1 − xi) 12 (f(xi+1) + f(xi))

d Trapezoid rule is MAP estimate under Wiener process prior on f
d regular grid is optimal expected information choice
d error estimate is under-confident

more about calibration of uncertainty in the talks ofChris Oates and John Cockayne.
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Computation as Inference
Bayes’ theorem yields four levers for new functionality

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: Likelihood:

Posterior: Evidence:
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Classic methods as basic probabilistic inference
maximum a-posteriori estimation in Gaussian models

Quadrature [Ajne & Dalenius 1960; Kimeldorf & Wahba
1975; Diaconis 1988; O’Hagan 1985/1991]

Gaussian Quadrature GP Regression
Linear Algebra [Hennig 2014]
Conjugate Gradients Gaussian Regression
Nonlinear Optimization [Hennig & Kiefel 2013]
BFGS / Quasi-Newton Autoregressive Filtering
Differential Equations [Schober, Duvenaud & Hennig 2014; Kerst-

ing & Hennig 2016; Schober & Hennig 2016]
Runge-Kutta; Nordsieck Methods Gauss-Markov Filters
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Probabilistic ODE Solvers
Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, . . .

x′(t) = f(x(t), t), x(t0) = x0

0 1 2 3 4 5 60

0.5

1

t

x(t)

There is a class of solvers for initial value problems that
d has the same complexity as multi-step methods
d has high local approximation order q (like classic solvers)
d has calibrated posterior uncertainty (order q + 1/2)

d this method _ Hans Kersting’s talk. https://github.com/ProbabilisticNumerics/pfos
d calibration _ Oksana Chkrebtii’s talk.
d convergence _ Tim Sullivan’s talk. 32
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d Probabilistic numerics can be as fast and reliable as classic ones.
d Computation can be phrased on ML language!
d Meaningful (calibrated) uncertainty can be constructed at minimalcomputational overhead (dominated by cost of point estimate)

So what does this mean for Data Science / ML / AI?

33



New Functionality, and new Challenges
making use of the probabilistic numerics perspective

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity. Likelihood:

Posterior: Evidence:

34



An integration prior for probability measures
WArped Sequential Active Bayesian Integration (WSABI) Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

a prior specifically for integration of probability measures
d f > 0 (f is probability measure)
d f ∝ exp(−x2) (f is product of prior and likelihood terms)
d f ∈ C∞ (f is smooth)

Explicit prior knowledge yields reduces complexity.
cf. information-based complexity.e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2
more on this connection in Houman Owhadi’s tutorial? 35
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Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modeling imprecise computation reduces cost

Posterior: Evidence:
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New numerics for Big Data
Uncertainty on Inputs directly effecting numerical decisions

In Big Data setting, batching introduces (Gaussian) noise
L(θ) = 1

N
N∑
i=1
`(yi;θ) ≈ 1

M
M∑
j=1
`(yj;θ) =: L̂(θ) M� N

p(L̂ | L) ≈ N
(
L̂;L,O

(N− M
M

))

L

y1 yN

Classic methods are unstable to noise. E.g.: step size selection
θt+1 = θt − αt∇L̂(θt)
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Probabilistic Line Searches
Step-size selection stochastic optimization Mahsereci & Hennig, NIPS 2015
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probabilistic line search: stable
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two-layer feed-forward perceptron on CIFAR 10. Details, additional results in Mahsereci & Hennig, NIPS 2015.
https://github.com/ProbabilisticNumerics/probabilistic_line_search

d batch-size selection cabs Balles & Hennig, arXiv 1612.05086
d early stopping Mahsereci, Balles & Hennig, arXiv 1703.09580
d search directions sodas Balles & Hennig, arXiv 1705.07774 38



Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modeling imprecise computation reduces cost

Posterior: tracking uncertainty for robustness Evidence:

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015
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Uncertainty Across Composite Computations
interacting information requirements Hennig, Osborne, Girolami, Proc. Royal Society A 2015

machineenvironment

learning / inference / pattern rec. / system id.

predictionaction

D xt θ

xt+δta

data variables parametersinference by
quadrature

estimation by
optimization

pred
ictio

nby
ana

lysis

action by
control

d probabilistic numerical methods taking and producing uncertain inputsand outputs allow management of computational resources
more on uncertainty propagation in Ilias Bilionis’ talk.
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Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modeling imprecise computation reduces cost

Posterior: tracking uncertainty for robustness Evidence: checking models for safety

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015
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Probabilistic Certification?
proof of concept: Hennig, Osborne, Girolami. Proc. Royal Society A, 2015

−2 0 200.20.40.60.81
f(x)

−2 0 2
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100
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# samples
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−400−2000

200400

# samples

r

r = Ef̃
[
log p(f̃(x))

p(f(x))
]

= (f(x)− µ(x))ᵀK−1(f(x)− µ(x))− N
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Summary
Uncertain computation as and for machine learning

d computation is inference _ probabilistic numerical methods
d probability measures for uncertain inputs and outputs
d classic methods as special cases

New concepts not just for Machine Learning:prior: structural knowledge reduces complexitylikelihood: imprecise computation lowers costposterior: uncertainty propagated through computationsevidence: model mismatch detectable at run-time
d ML & AI pose new computational challenges
d computational methods can be phrased in the concepts of ML
d but related results of mathematics are currently “under-explored”
d more about all of this in this seminar!

http://probnum.org https://pn.is.tue.mpg.de
43




	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	anm2: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	3.6: 
	3.7: 
	3.8: 
	3.9: 
	3.10: 
	3.11: 
	3.12: 
	3.13: 
	3.14: 
	3.15: 
	3.16: 
	3.17: 
	3.18: 
	3.19: 
	anm3: 
	4.0: 
	4.1: 
	4.2: 
	4.3: 
	4.4: 
	4.5: 
	4.6: 
	4.7: 
	4.8: 
	4.9: 
	4.10: 
	4.11: 
	4.12: 
	4.13: 
	4.14: 
	4.15: 
	4.16: 
	4.17: 
	4.18: 
	4.19: 
	anm4: 
	5.0: 
	5.1: 
	5.2: 
	5.3: 
	5.4: 
	5.5: 
	5.6: 
	5.7: 
	5.8: 
	5.9: 
	5.10: 
	5.11: 
	5.12: 
	5.13: 
	5.14: 
	5.15: 
	5.16: 
	5.17: 
	5.18: 
	5.19: 
	anm5: 
	6.0: 
	6.1: 
	6.2: 
	6.3: 
	6.4: 
	6.5: 
	6.6: 
	6.7: 
	6.8: 
	6.9: 
	6.10: 
	6.11: 
	6.12: 
	6.13: 
	6.14: 
	6.15: 
	6.16: 
	6.17: 
	6.18: 
	6.19: 
	anm6: 
	7.0: 
	7.1: 
	7.2: 
	7.3: 
	7.4: 
	7.5: 
	7.6: 
	7.7: 
	7.8: 
	7.9: 
	7.10: 
	7.11: 
	7.12: 
	7.13: 
	7.14: 
	7.15: 
	7.16: 
	7.17: 
	7.18: 
	7.19: 
	anm7: 
	8.0: 
	8.1: 
	8.2: 
	8.3: 
	8.4: 
	8.5: 
	8.6: 
	8.7: 
	8.8: 
	8.9: 
	8.10: 
	8.11: 
	8.12: 
	8.13: 
	8.14: 
	8.15: 
	8.16: 
	8.17: 
	8.18: 
	8.19: 
	anm8: 
	9.0: 
	9.1: 
	9.2: 
	9.3: 
	9.4: 
	9.5: 
	9.6: 
	9.7: 
	9.8: 
	9.9: 
	9.10: 
	9.11: 
	9.12: 
	9.13: 
	9.14: 
	9.15: 
	9.16: 
	9.17: 
	9.18: 
	9.19: 
	anm9: 
	10.0: 
	10.1: 
	10.2: 
	10.3: 
	10.4: 
	10.5: 
	10.6: 
	10.7: 
	10.8: 
	10.9: 
	10.10: 
	10.11: 
	10.12: 
	10.13: 
	10.14: 
	10.15: 
	10.16: 
	10.17: 
	10.18: 
	10.19: 
	anm10: 
	11.0: 
	11.1: 
	11.2: 
	11.3: 
	11.4: 
	11.5: 
	11.6: 
	11.7: 
	11.8: 
	11.9: 
	11.10: 
	11.11: 
	11.12: 
	11.13: 
	11.14: 
	11.15: 
	11.16: 
	11.17: 
	11.18: 
	11.19: 
	anm11: 
	12.0: 
	12.1: 
	12.2: 
	12.3: 
	12.4: 
	12.5: 
	12.6: 
	12.7: 
	12.8: 
	12.9: 
	12.10: 
	12.11: 
	12.12: 
	12.13: 
	12.14: 
	12.15: 
	12.16: 
	12.17: 
	12.18: 
	12.19: 
	anm12: 
	13.0: 
	13.1: 
	13.2: 
	13.3: 
	13.4: 
	13.5: 
	13.6: 
	13.7: 
	13.8: 
	13.9: 
	13.10: 
	13.11: 
	13.12: 
	13.13: 
	13.14: 
	13.15: 
	13.16: 
	13.17: 
	13.18: 
	13.19: 
	anm13: 
	14.0: 
	14.1: 
	14.2: 
	14.3: 
	14.4: 
	14.5: 
	14.6: 
	14.7: 
	14.8: 
	14.9: 
	14.10: 
	14.11: 
	14.12: 
	14.13: 
	14.14: 
	14.15: 
	14.16: 
	14.17: 
	14.18: 
	14.19: 
	anm14: 
	15.0: 
	15.1: 
	15.2: 
	15.3: 
	15.4: 
	15.5: 
	15.6: 
	15.7: 
	15.8: 
	15.9: 
	15.10: 
	15.11: 
	15.12: 
	15.13: 
	15.14: 
	15.15: 
	15.16: 
	15.17: 
	15.18: 
	15.19: 
	anm15: 
	16.0: 
	16.1: 
	16.2: 
	16.3: 
	16.4: 
	16.5: 
	16.6: 
	16.7: 
	16.8: 
	16.9: 
	16.10: 
	16.11: 
	16.12: 
	16.13: 
	16.14: 
	16.15: 
	16.16: 
	16.17: 
	16.18: 
	16.19: 
	anm16: 
	17.0: 
	17.1: 
	17.2: 
	17.3: 
	17.4: 
	17.5: 
	17.6: 
	17.7: 
	17.8: 
	17.9: 
	17.10: 
	17.11: 
	17.12: 
	17.13: 
	17.14: 
	17.15: 
	17.16: 
	17.17: 
	17.18: 
	17.19: 
	anm17: 
	18.0: 
	18.1: 
	18.2: 
	18.3: 
	18.4: 
	18.5: 
	18.6: 
	18.7: 
	18.8: 
	18.9: 
	18.10: 
	18.11: 
	18.12: 
	18.13: 
	18.14: 
	18.15: 
	18.16: 
	18.17: 
	18.18: 
	18.19: 
	anm18: 
	19.0: 
	19.1: 
	19.2: 
	19.3: 
	19.4: 
	19.5: 
	19.6: 
	19.7: 
	19.8: 
	19.9: 
	19.10: 
	19.11: 
	19.12: 
	19.13: 
	19.14: 
	19.15: 
	19.16: 
	19.17: 
	19.18: 
	19.19: 
	anm19: 


