The computations of acting agents and the agents acting in computations

Philipp Hennig ICERM 5 June 2017

Research Group for Probabilistic Numerics Max Planck Institute for Intelligent Systems Tübingen, Germany

Some of the presented work was supported by the Emmy Noether Programme of the DFG

Part I: The computations of acting agents

- + a minimal introduction to machine learning
- + the computational tasks of learning agents
- + some special challenges, some house numbers

Part II: The agents acting in computations

- + computation is inference
- + new challenges require new answers
- a computer science view on numerical computations

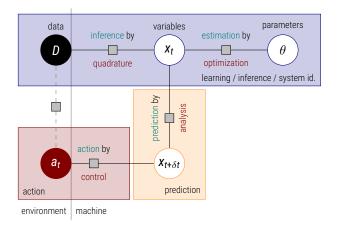
09:00-09:45

10:30-11:15

An Acting Agent

autonomous interaction with a data-source

from 🖹 Hennig, Osborne, Girolami, Proc. Roy. Soc. A, 2015



probabilistic inference

 $p(x \mid D) = \frac{p(x)p(D \mid x)}{\int p(x)p(D \mid x) \, dx}$

prior explicit representation of assumptions about latent variables likelihood explicit representation of assumptions about generation of data posterior structured uncertainty over prediction evidence marginal likelihood of model

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{2\pi|\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

Gaussian Inference

the link between probabilistic inference and linear algebra

- + products of Gaussians are Gaussians $C := (A^{-1} + B^{-1})^{-1} c := C(A^{-1}a + B^{-1}b)$ $\mathcal{N}(x; a, A)\mathcal{N}(x; b, B) = \mathcal{N}(x; c, C)\mathcal{N}(a; b, A + B)$
- marginals of Gaussians are Gaussians

$$\int \mathcal{N}\left[\begin{pmatrix} x\\ y \end{pmatrix}; \begin{pmatrix} \mu_x\\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy}\\ \Sigma_{yx} & \Sigma_{yy} \end{pmatrix}\right] dy = \mathcal{N}(x; \mu_x, \Sigma_{xx})$$

+ (linear) conditionals of Gaussians are Gaussians

$$p(x \mid y) = \frac{p(x, y)}{p(y)} = \mathcal{N}\left(x; \mu_x + \sum_{xy} \sum_{yy}^{-1} (y - \mu_y), \sum_{xx} - \sum_{xy} \sum_{yy}^{-1} \sum_{yx}\right)$$

linear projections of Gaussians are Gaussians

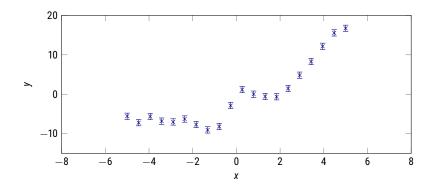
$$p(z) = \mathcal{N}(z; \mu, \Sigma) \implies p(Az) = \mathcal{N}(Az, A\mu, A\Sigma A^{\mathsf{T}})$$

Bayesian inference becomes linear algebra

$$\begin{split} p(x) &= \mathcal{N}(x; \mu, \Sigma) \qquad p(y \mid x) = \mathcal{N}(y; A^{\mathsf{T}} x + b, \Lambda) \\ p(B^{\mathsf{T}} x + c \mid y) &= \mathcal{N}[B^{\mathsf{T}} x + c; B^{\mathsf{T}} \mu + c + B^{\mathsf{T}} \Sigma A (A^{\mathsf{T}} \Sigma A + \Lambda)^{-1} (y - A^{\mathsf{T}} \mu - b), \\ B^{\mathsf{T}} \Sigma B - B^{\mathsf{T}} \Sigma A (A^{\mathsf{T}} \Sigma A + \Lambda)^{-1} A^{\mathsf{T}} \Sigma B] \end{split}$$

A Minimal Machine Learning Setup

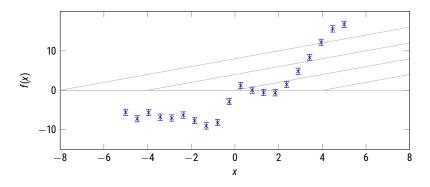
nonlinear regression problem



 $p(y \mid f_X) = \mathcal{N}(y; f_X, \sigma I)$

Gaussian Parametric Regression

aka. general linear least-squares



$$f(x) = \phi(x)^{\mathsf{T}} \mathsf{w} = \sum_{i} w_{i} \phi_{i}(x) \qquad p(\mathsf{w}) = \mathcal{N}(\mathsf{w}; \mu, \Sigma)$$

$$\Rightarrow \quad p(f) = \mathcal{N}(f, \phi^{\mathsf{T}} \mu, \phi^{\mathsf{T}} \Sigma \phi) \qquad \phi_{i}(x) = \mathbb{I}(x > a_{i}) \cdot c_{i}(x - a_{i}) \qquad (\mathsf{RELU})$$

Gaussian Parametric Regression

aka. general linear least-squares

$$f(\mathbf{x}) = \phi(\mathbf{x})^{\mathsf{T}} \mathbf{w} = \sum_{i} w_{i} \phi_{i}(\mathbf{x}) \qquad p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \mu, \Sigma)$$

$$\Rightarrow \quad p(f) = \mathcal{N}(f, \phi^{\mathsf{T}} \mu, \phi^{\mathsf{T}} \Sigma \phi) \qquad \phi_{i}(\mathbf{x}) = \mathbb{I}(\mathbf{x} > \mathbf{a}_{i}) \cdot \mathbf{c}_{i}(\mathbf{x} - \mathbf{a}_{i}) \qquad (\mathsf{RELU})$$

Gaussian Parametric Regression

aka. general linear least-squares

$$\begin{split} p(\boldsymbol{y} \mid \boldsymbol{w}, \phi_X) &= \mathcal{N}(\boldsymbol{y}; \phi_X^{\mathsf{T}} \boldsymbol{w}, \sigma^2 \boldsymbol{l}) \\ p(\boldsymbol{f}_X \mid \boldsymbol{y}, \phi_X) &= \mathcal{N}(\boldsymbol{f}_X; \phi_X^{\mathsf{T}} \boldsymbol{\mu} + \phi_X^{\mathsf{T}} \boldsymbol{\Sigma} \phi_X (\phi_X^{\mathsf{T}} \boldsymbol{\Sigma} \phi_X + \sigma^2 \boldsymbol{l})^{-1} (\boldsymbol{y} - \phi_X^{\mathsf{T}} \boldsymbol{\mu}), \\ \phi_X^{\mathsf{T}} \boldsymbol{\Sigma} \phi_X - \phi_X^{\mathsf{T}} \boldsymbol{\Sigma} \phi_X (\phi_X^{\mathsf{T}} \boldsymbol{\Sigma} \phi_X + \sigma^2 \boldsymbol{l})^{-1} \phi_X^{\mathsf{T}} \boldsymbol{\Sigma} \phi_X) \end{split}$$

The Choice of Prior Matters

Bayesian framework provides flexible yet explicit modelling language

$$\phi_i(\mathbf{x}) = \theta \exp\left(-\frac{(\mathbf{x}-\mathbf{c}_i)^2}{2\lambda^2}\right)$$

The Choice of Prior Matters

Bayesian framework provides flexible yet explicit modelling language

$$\phi_i(\mathbf{x}) = \theta \exp\left(-\frac{(\mathbf{x}-\mathbf{c}_i)^2}{2\lambda^2}\right)$$

popular extension no. 1 requires large-scale linear algebra

$$p(f_x \mid y, \phi_X) = \mathcal{N}(f_x; \phi_x^{\mathsf{T}} \mu + \phi_x^{\mathsf{T}} \Sigma \phi_X (\phi_X^{\mathsf{T}} \Sigma \phi_X + \sigma^2 l)^{-1} (y - \phi_X^{\mathsf{T}} \mu), \phi_x^{\mathsf{T}} \Sigma \phi_x - \phi_x^{\mathsf{T}} \Sigma \phi_X (\phi_X^{\mathsf{T}} \Sigma \phi_X + \sigma^2 l)^{-1} \phi_X^{\mathsf{T}} \Sigma \phi_X)$$

- + set µ = 0
- + aim for closed-form expression of kernel $\phi_a^{\mathsf{T}} \Sigma \phi_b$

Features are cheap, so let's use a lot

an example

+ For simplicity, let's fix
$$\Sigma = \frac{\sigma^2(c_{\text{max}} - c_{\text{min}})}{F}I$$

thus:
$$\phi(\mathbf{x}_i)^\mathsf{T} \Sigma \phi(\mathbf{x}_j) = \frac{\sigma^2 (\mathbf{c}_{\max} - \mathbf{c}_{\min})}{F} \sum_{\ell=1}^F \phi_\ell(\mathbf{x}_i) \phi_\ell(\mathbf{x}_j)$$

+ especially, for
$$\phi_\ell(x) = \exp\left(-\frac{(x-c_\ell)^2}{2\lambda^2}\right)$$

$$\begin{aligned} \phi(\mathbf{x}_i)^{\mathsf{T}} \Sigma \phi(\mathbf{x}_j) \\ &= \frac{\sigma^2 (\mathbf{c}_{\max} - \mathbf{c}_{\min})}{F} \sum_{\ell=1}^F \exp\left(-\frac{(\mathbf{x}_i - \mathbf{c}_\ell)^2}{2\lambda^2}\right) \exp\left(-\frac{(\mathbf{x}_j - \mathbf{c}_\ell)^2}{2\lambda^2}\right) \\ &= \frac{\sigma^2 (\mathbf{c}_{\max} - \mathbf{c}_{\min})}{F} \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{4\lambda^2}\right) \sum_{\ell}^F \exp\left(-\frac{(\mathbf{c}_\ell - \frac{1}{2}(\mathbf{x}_i + \mathbf{x}_j))^2}{\lambda^2}\right) \end{aligned}$$

Features are cheap, so let's use a lot

$$\phi(\mathbf{x}_i)^{\mathsf{T}} \Sigma \phi(\mathbf{x}_j) = \frac{\sigma^2 (\mathbf{c}_{\max} - \mathbf{c}_{\min})}{F} \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{4\lambda^2}\right) \sum_{\ell}^F \exp\left(-\frac{(\mathbf{c}_{\ell} - \frac{1}{2}(\mathbf{x}_i + \mathbf{x}_j))^2}{\lambda^2}\right)$$

+ now increase F so # of features in δc approaches $\frac{F \cdot \delta c}{(c_{max} - c_{min})}$

$$\phi(\mathbf{x}_i)^{\mathsf{T}} \Sigma \phi(\mathbf{x}_j) \rightarrow \sigma^2 \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{4\lambda^2}\right) \int_{c_{\min}}^{c_{\max}} \exp\left(-\frac{(\mathbf{c} - \frac{1}{2}(\mathbf{x}_i + \mathbf{x}_j))^2}{\lambda^2}\right) \, d\mathbf{c}$$

+ let $c_{\min} \rightarrow -\infty$, $c_{\max} \rightarrow \infty$

$$k(\mathbf{x}_i, \mathbf{x}_j) := \phi(\mathbf{x}_i)^{\mathsf{T}} \Sigma \phi(\mathbf{x}_j) \rightarrow \sqrt{2\pi} \lambda \sigma^2 \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{4\lambda^2}\right)$$

Gaussian Process Regression

aka. Kriging, kernel-ridge regression,...

$$p(f) = \mathcal{GP}(0,k)$$
 $k(a,b) = \exp\left(-\frac{(a-b)^2}{2\lambda^2}\right)$

Gaussian Process Regression

aka. Kriging, kernel-ridge regression,...

$$p(f \mid y) = \mathcal{GP}(f_x; k_{xX}(k_{XX} + \sigma^2 I)^{-1}y, k_{xx} - k_{xX}(k_{XX} + \sigma^2 I)^{-1}k_{Xx})$$

The prior still matters

just one other example out of the space of kernels

For $\phi_i(\mathbf{x}) = \mathbb{I}(\mathbf{x} > \mathbf{c}_i)(\mathbf{x} - \mathbf{c}_i)$, an analogous limit gives

just one other example out of the space of kernels

 $p(f) = \mathcal{GP}(0, k)$ with $k(a, b) = \theta^{21/3} \min(a, b)^3 + |a - b| \min(a, b)^2$. the **integrated Wiener process**, aka. **cubic splines**.

More on GPs in Paris Perdikaris' tutorial.

more on nonparametric models in Neil Lawrence's and Tamara Broderick's talks?

The Computational Challenge

large-scale linear algebra

$$\alpha := \underbrace{(k_{XX} + \sigma^2 I)^{-1}}_{\in \mathbb{R}^{N \times N}, \text{ symm. pos. def.}} y \qquad k_{aX}(k_{XX} + \sigma^2 I)^{-1}k_{Xb} \qquad \log |k_{XX} + \sigma^2 I|$$

The Computational Challenge

large-scale linear algebra

$$\alpha := \underbrace{(k_{XX} + \sigma^2 I)^{-1}}_{\in \mathbb{R}^{N \times N}, \text{ symm. pos. def.}} y \qquad k_{aX}(k_{XX} + \sigma^2 I)^{-1}k_{Xb} \qquad \log |k_{XX} + \sigma^2 I|$$

Methods in wide use:

- + exact linear algebra (BLAS), for $N \lesssim 10^4$ (because $\mathcal{O}(N^3)$)
- + (rarely:) iterative Krylov solvers (in part. conjugate gradients), for $N \lesssim 10^5$

For large-scale (*O*(*NM*²)):

inducing point methods, Nyström, etc.:

$$k_{ab} \approx \tilde{k}_{au} \Omega^{-1} \tilde{k}_{ub} \qquad \Omega^{-1} \in \mathbb{R}^{M imes M}$$

Williams & Seeger, 2001; Quiñonero & Rasmussen, 2005;
 Snelson & Ghahramani, 2007; Titsias, 2009

spectral expansions

using algebraic properties of kernel

🖹 Rahimi & Recht 2008; 2009

using iid. structure of data

using Markov structure

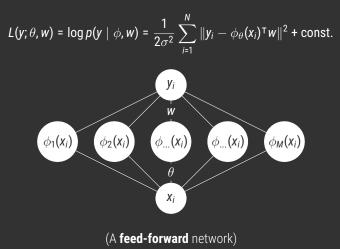
in univariate setting: filtering

Särkkä 2013

Both are **linear time**, with **finite error**. Bridge to iterative methods is beginning to form, via **sub-space** recycling (de Roos & P.H., arXiv 1706.00241 2017)

popular extensions no. 2: requires large-scale nonlinear optimization

Maximum Likelihood estimation: Assume $\phi(\mathbf{x}) = \phi_{\theta}(\mathbf{x})$



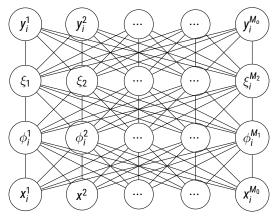
Learning Features

a (in general) non-convex, non-linear optimization problem

Deep Learning (really just a quick peek)

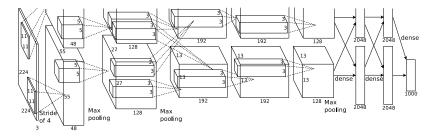
in practice:

- + multiple input dimensions (e.g. pixel intensities)
- + multi-dimensional output (e.g. structured sentences)
- multiple feature layers
- + structured layers (convolutions, pooling, pyramids, etc.)



Deep Learning has become Mainstream

an increasingly professional industry



Krizhevsky, Sutskever & Hinton "ImageNet Classification with Deep Convolutional Neural Networks"

Adv. in Neural Information Processing Systems (NIPS 2012) 25, pp. 1097-1105

... and continues to impress

predicting whole-image semantic labels

Karpathy & Fei-Fei."Deep Visual-Semantic Alignments for Generating Image Descriptions". Computer Vision and Pattern Recognition (CVPR 2015)

Zhao, Mathieu & LeCun, "Energy-based generative adversarial networks". Int. Conf. on Learning Representations (ICLR) 2017

The Computational Challenge

high-dimensional, non-convex, stochastic optimization

- + contemporary problems are extremely high-dimensional $N > 10^7$
- optimizer interacts with model
 - 🖹 Chaudhari et al. arXiv 1611.01838, 🖹 Keskar et al., 1609.04836
- + biggest challenge: stochasticity

$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i; \theta) \approx \frac{1}{M} \sum_{j=1}^{M} \ell(y_j; \theta) =: \hat{\mathcal{L}}(\theta) \qquad M \ll N$$
$$p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}\left(\hat{\mathcal{L}}; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{M}\right)\right)$$

classic optimization paradigms break down.

- + currently dominant optimizers are surprisingly simple:
 - stochastic gradient descent
 - RMSPROP
 - ✤ ADADELTA
 - ⋆ ADAM

Robbins & Monro, 1951 Tielemann & Hinton, unpublished Zeiler, arXiv 1212.5701 Kingma & Ba, ICLR 2015

more in part II ...

popular extension no. 3 requires high-dimensional integration of probability measures

- + in $p(f) = \mathcal{GP}(0, k)$, what should k be?
- + parametrize $\mathbf{k} = \mathbf{k}^{\theta}$, $\mu = \mu^{\theta}$, $\Lambda = \Lambda^{\theta}$

$$p(y \mid \theta) = \int p(y \mid f, \theta) p(f \mid \theta) df = \int \mathcal{N}(y; f_X, \Lambda^{\theta}) \mathcal{GP}(f; \mu^{\theta}, k^{\theta})$$
$$= \mathcal{N}(y, \mu_X^{\theta}, \Lambda^{\theta} + k_{XX}^{\theta})$$
$$p(f \mid y) = \int p(f \mid y, \theta) p(\theta \mid y) d\theta$$

hierarchical Bayesian inference

+ practical cases can be extremely high-dimensional

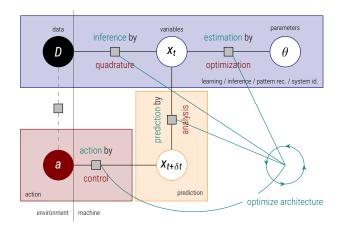
(→ Bayesian deep learning)

- standard approaches:
 - + free energy minimization of a parametric approximation
 - Markov Chain Monte Carlo
- + elaborate toolboxes available
 (→ probabilistic programming)
- + but few (practically relevant) finite-time guarantees

more about hierarchical Bayesian inference in Tamara Broderick's talk?

The Optimization View on Hierarchical Inference

Bayesian Optimization



- non-convex (multi-modal!) global optimization
- expensive evaluations

more about optimization of architectures in Roman Garnett's talk

Summary: The Computations of Acting Agents

- + machine intelligence requires computations
 - + **integration** for marginalization
 - + optimization for fitting
 - + differential equations for control
 - + linear algebra for all of the above
- + contemporary AI problems pose very challenging numerical problems
- + uncertainty from data-subsampling plays a crucial, intricate role
- classic numerical methods leave room for improvement

after coffee:

Learning machines don't just pose problems-they also promise some answers.

ML computations are dominated by numerical tasks

task	amounts to	using black box
marginalize	integration	MCMC, Variational, EP,
train/fit	optimization	SGD et al., quasi-Nwton,
predict/control	ord. diff. Eq.	Euler, Runge-Kutta,
Gauss/kernel/LSq.	linear Algebra	Chol., CG, spectral, low-rank,

- + Scientific computing has produced a **very efficient toolchain**, but we are (usually) only using generic methods!
- + methods on loan do not address some of ML's special needs
 - + overly generic algorithms are inefficient
 - + Big Data-specific challenges not addressed by "classic" methods

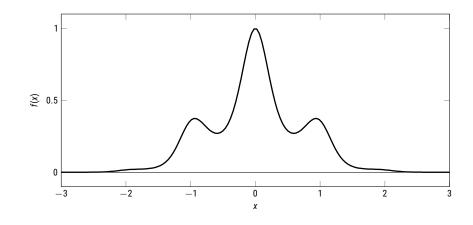
ML deservers customized numerical methods. And as it turns out, we already have the right concepts! http://probnum.org

Numerical methods estimate latent quantities given the result of computations.

integration linear algebra optimization analysis estimate $\int_{a}^{b} f(x) dx$ estimate x s.t. Ax = bestimate x s.t. $\nabla f(x) = 0$ estimate x(t) s.t. x' = f(x, t)

given $\{f(x_i)\}$ given $\{As = y\}$ given $\{\nabla f(x_i)\}$ given $\{f(x_i, t_i)\}$

It is thus possible to build probabilistic numerical methods that use probability measures as in- and outputs, and assign a notion of uncertainty to computation.



 $f(x) = \exp(-\sin(3x)^2 - x^2)$ $F = \int_{-3}^{3} f(x) \, dx = ?$

Bayesian Quadrature

$$p(f) = \mathcal{GP}(f; 0, k) \qquad k(x, x') = \min(x, x') + c$$

$$\Rightarrow p\left(\int_{a}^{b} f(x) dx\right) = \mathcal{N}\left[\int_{a}^{b} f(x) dx; \int_{a}^{b} m(x) dx, \int \int_{a}^{b} k(x, x') dx dx'\right]$$

$$= \mathcal{N}(F; 0, -\frac{1}{6}(b^{3} - a^{3}) + \frac{1}{2}[b^{3} - 2a^{2}b + a^{3}] - (b - a)^{2}c)$$

... conditioned on actively collected information ...

computation as the collection of information

$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

+ maximal reduction of variance yields regular grid

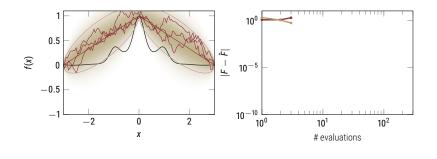
... conditioned on actively collected information ...

computation as the collection of information

$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

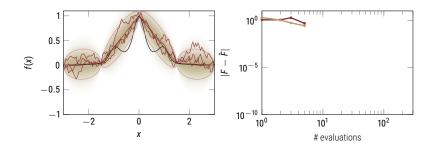
+ maximal reduction of variance yields regular grid

computation as the collection of information



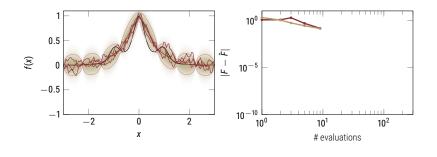
$$\mathbf{x}_t = \arg \min \left[\operatorname{var}_{p(F|x_1, \dots, x_{t-1})}(F) \right]$$

computation as the collection of information



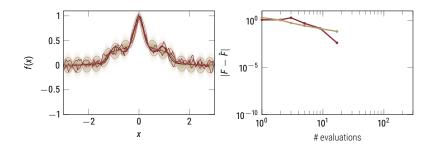
$$\mathbf{x}_t = \arg \min \left[\operatorname{var}_{p(F|x_1, \dots, x_{t-1})}(F) \right]$$

computation as the collection of information



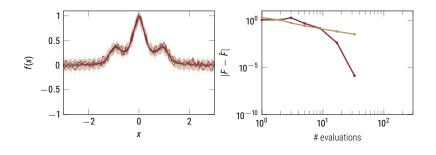
$$\mathbf{x}_t = \arg \min \left[\operatorname{var}_{p(F|x_1, \dots, x_{t-1})}(F) \right]$$

computation as the collection of information



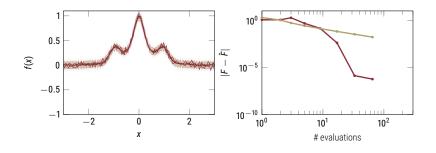
$$\mathbf{x}_t = \arg \min \left[\operatorname{var}_{p(F|x_1, \dots, x_{t-1})}(F) \right]$$

computation as the collection of information



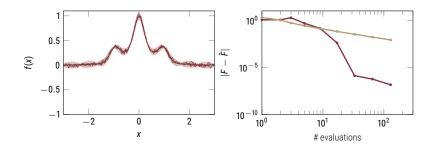
$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

computation as the collection of information



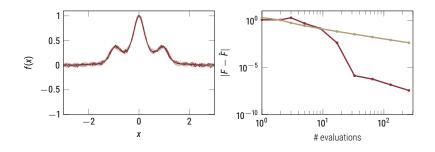
$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

computation as the collection of information



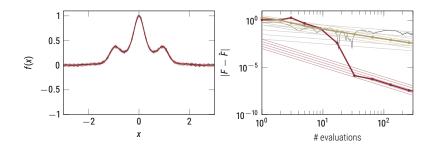
$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

computation as the collection of information



$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

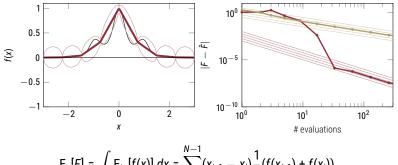
computation as the collection of information



$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

... yields the trapezoid rule!

🖹 Kimeldorf & Wahba 1975, Diaconis 1988, O'Hagan 1985/1991



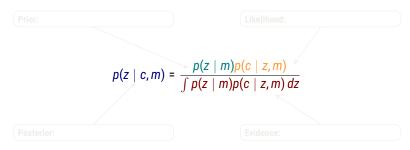
$$E_{y}[F] = \int E_{|y}[f(x)] dx = \sum_{i=1}^{\infty} (x_{i+1} - x_i) \frac{1}{2} (f(x_{i+1}) + f(x_i))$$

- + Trapezoid rule is MAP estimate under Wiener process prior on f
- + regular grid is optimal expected information choice
- error estimate is under-confident

more about calibration of uncertainty in the talks of Chris Oates and John Cockayne.

Bayes' theorem yields four levers for new functionality

Estimate *z* from computations *c*, under model *m*.



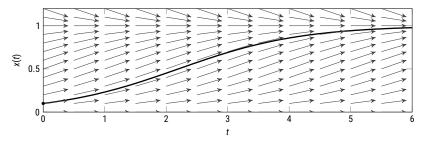
Classic methods as basic probabilistic inference

maximum a-posteriori estimation in Gaussian models

Quadrature Gaussian Quadrature <	[Ajne & Dalenius 1960; Kimeldorf & Wahba 1975; Diaconis 1988; O'Hagan 1985/1991] → GP Regression
Linear Algebra	[Hennig 2014]
Conjugate Gradients ←	→ Gaussian Regression
Nonlinear Optimization	[Hennig & Kiefel 2013]
BFGS / Quasi-Newton <	→ Autoregressive Filtering
Differential Equations Runge-Kutta; Nordsieck Methods <	[Schober, Duvenaud & Hennig 2014; Kerst- ing & Hennig 2016; Schober & Hennig 2016] → Gauss-Markov Filters

🖹 Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, ...

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$



There is a class of solvers for initial value problems that

- has the same complexity as multi-step methods
- has high local approximation order q (like classic solvers)
- has calibrated posterior uncertainty (order q + 1/2)
- this method → Hans Kersting's talk.
- calibration → Oksana Chkrebtii's talk.
- convergence → Tim Sullivan's talk.

🖹 Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, ...

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

There is a class of solvers for initial value problems that

- + has the same complexity as multi-step methods
- + has high local approximation order q (like classic solvers)
- has calibrated posterior uncertainty (order q + 1/2)
- this method → Hans Kersting's talk.
- calibration → Oksana Chkrebtii's talk.
- + convergence → Tim Sullivan's talk.

🖹 Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, ...

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

There is a class of solvers for initial value problems that

- + has the same complexity as multi-step methods
- + has high local approximation order q (like classic solvers)
- has calibrated posterior uncertainty (order q + 1/2)
- this method → Hans Kersting's talk.
- calibration → Oksana Chkrebtii's talk.
- + convergence → Tim Sullivan's talk.

🖹 Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, ...

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

There is a class of solvers for initial value problems that

- + has the same complexity as multi-step methods
- + has high local approximation order q (like classic solvers)
- has calibrated posterior uncertainty (order q + 1/2)
- this method → Hans Kersting's talk.
- calibration → Oksana Chkrebtii's talk.
- + convergence → Tim Sullivan's talk.

🖹 Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, ...

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

There is a class of solvers for initial value problems that

- + has the same complexity as multi-step methods
- + has high local approximation order q (like classic solvers)
- has calibrated posterior uncertainty (order q + 1/2)
- this method → Hans Kersting's talk.
- calibration → Oksana Chkrebtii's talk.
- + convergence → Tim Sullivan's talk.

🖹 Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, ...

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

There is a class of solvers for initial value problems that

- + has the same complexity as multi-step methods
- + has high local approximation order q (like classic solvers)
- has calibrated posterior uncertainty (order q + 1/2)
- this method → Hans Kersting's talk.
- calibration → Oksana Chkrebtii's talk.
- + convergence → Tim Sullivan's talk.

Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, ...

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

There is a class of solvers for initial value problems that

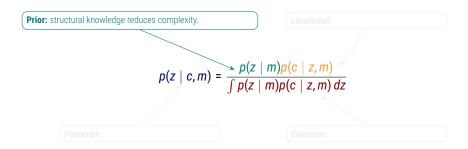
- has the same complexity as multi-step methods
- has high local approximation order q (like classic solvers)
- has calibrated posterior uncertainty (order q + 1/2)
- + this method \rightarrow Hans Kersting's talk.
- + calibration → Oksana Chkrebtii's talk.
- convergence → Tim Sullivan's talk.

- + Probabilistic numerics can be as **fast** and **reliable** as classic ones.
- + Computation can be phrased on ML language!
- Meaningful (calibrated) uncertainty can be constructed at minimal computational overhead (dominated by cost of point estimate)

So what does this mean for Data Science / ML / Al?

New Functionality, and new Challenges

making use of the probabilistic numerics perspective



WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014

a prior specifically for integration of probability measures

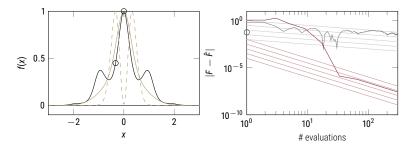
- f > 0 (f is probability measure)
- + $f \propto \exp(-x^2)$ (f is product of prior and likelihood terms)
- + $f \in C^{\infty}$ (*f* is smooth)

Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014



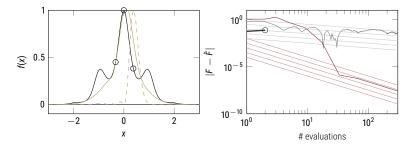
- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- faster (in wall-clock time) than MCMC

Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014



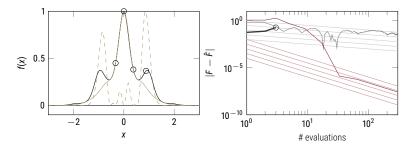
- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014



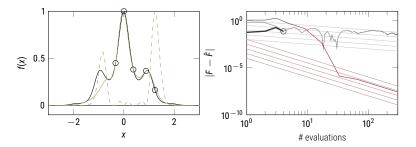
- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014



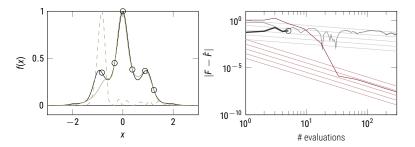
- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014



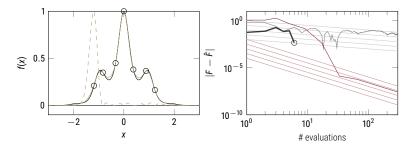
- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014



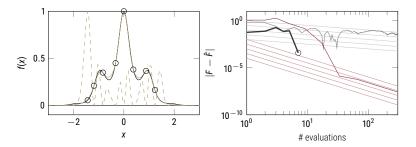
- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014



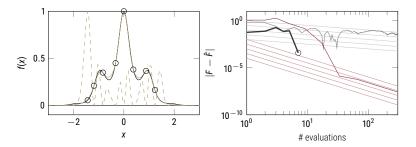
- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- faster (in wall-clock time) than MCMC

Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

WArped Sequential Active Bayesian Integration (WSABI) 🖹 Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014



- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- faster (in wall-clock time) than MCMC

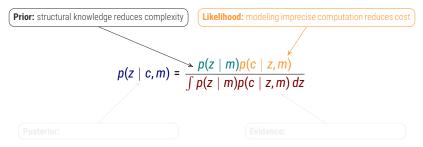
Explicit prior knowledge yields reduces complexity.

cf. information-based complexity.

e.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2

new numerical functionality for machine learning

Estimate *z* from computations *c*, under model *m*.



New numerics for Big Data

Uncertainty on Inputs directly effecting numerical decisions

In Big Data setting, batching introduces (Gaussian) noise

$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(\mathbf{y}_i; \theta) \approx \frac{1}{M} \sum_{j=1}^{M} \ell(\mathbf{y}_j; \theta) =: \hat{\mathcal{L}}(\theta) \qquad M \ll N$$
$$p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}\left(\hat{\mathcal{L}}; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{M}\right)\right)$$

 \mathcal{L}

New numerics for Big Data

Uncertainty on Inputs directly effecting numerical decisions

In Big Data setting, batching introduces (Gaussian) noise

$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i; \theta) \approx \frac{1}{M} \sum_{j=1}^{M} \ell(y_j; \theta) =: \hat{\mathcal{L}}(\theta) \qquad M \ll N$$
$$p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}\left(\hat{\mathcal{L}}; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{M}\right)\right)$$
$$(\mathcal{L}) = \mathcal{N}\left(\hat{\mathcal{L}}; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{M}\right)\right)$$

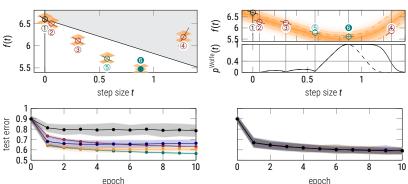
Classic methods are unstable to noise. E.g.: step size selection

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha_t \nabla \hat{\mathcal{L}}(\boldsymbol{\theta}_t)$$

Probabilistic Line Searches

Step-size selection stochastic optimization

Mahsereci & Hennig, NIPS 2015



classic line search: unstable

probabilistic line search: stable

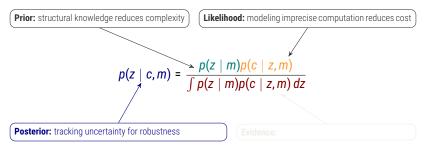
two-layer feed-forward perceptron on CIFAR 10. Details, additional results in Mahsereci & Hennig, NIPS 2015.

https://github.com/ProbabilisticNumerics/probabilistic_line_search

 batch-size selection 	cabs l	Balles	& Hennig,	arXiv 1612.05086
 early stopping 	Mahsered	ci, Balles	& Hennig,	arXiv 1703.09580
 search directions 	sodas	Balles	& Hennig	, arXiv 1705.07774

new numerical functionality for machine learning

Estimate *z* from computations *c*, under model *m*.

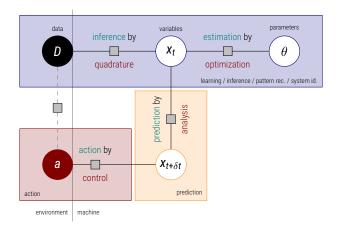


cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

Uncertainty Across Composite Computations

interacting information requirements

🖹 Hennig, Osborne, Girolami, Proc. Royal Society A 2015

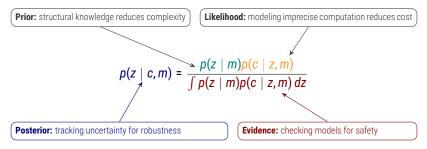


 probabilistic numerical methods taking and producing uncertain inputs and outputs allow management of computational resources

more on uncertainty propagation in Ilias Bilionis' talk.

new numerical functionality for machine learning

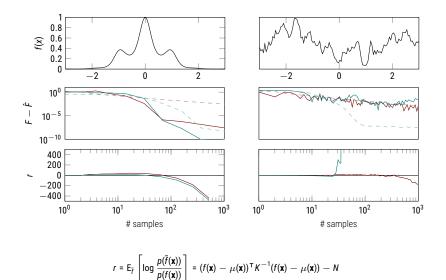
Estimate *z* from computations *c*, under model *m*.



cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

Probabilistic Certification?

proof of concept: 🖹 Hennig, Osborne, Girolami. Proc. Royal Society A, 2015



Uncertain computation as and for machine learning

+ computation is inference --> probabilistic numerical methods

- + probability measures for uncertain inputs and outputs
- + classic methods as special cases

New concepts not just for Machine Learning:

prior: structural knowledge reduces complexitylikelihood: imprecise computation lowers costposterior: uncertainty propagated through computationsevidence: model mismatch detectable at run-time

- + ML & AI pose **new** computational challenges
- + computational methods can be phrased in the concepts of ML
- + but related results of mathematics are currently "under-explored"
- + more about all of this in this seminar!

http://probnum.org https://pn.is.tue.mpg.de